How do I solve simultaneous equations like 2x + 5y = 50 and 3x + y = 23?

With simultaneous equations like these, you first want to get to a point where you have one equation with only one variable. To do this, you must eliminate one of the variables. In this case, if you multiply both sides of the second equation by 5, you get 15x + 5y = 115. Both equations now have a 5y term in them, so you can take one away from the other and eliminate the variable y:
15x + 5y = 115-(2x + 5y = 50)
13x + 0y = 65
65 / 13 = 5, so x = 5. We can now plug this value back into either of the original equations to find y. Using the second equation (before we multiplied it by 5), we get:
3 * 5 + y = 2315 + y = 23y = 8
So x = 5 and y = 8

AH
Answered by Alfie H. Maths tutor

1945 Views

See similar Maths 13 Plus tutors

Related Maths 13 Plus answers

All answers ▸

If a triangle has all equal length sides, what is the angle of one of the corners?


Mike paid a total of £4.69 for a chocolate bar, a bag of crisps and a jar of jam. The jar of jam costs £2.19. The chocolate bar costs 57 pence. How much did the bag of crisps cost?


Solve the equation 7 - 4x = x + 8.


find 12% of £550 (non calculator)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning