Integrate ln(x)

Our A-level knowledge does not give us any identities to be able to integrate this from memory. But what we do have from memory is that the derivative of ln(x) is 1/x. Why would this help us? Let's take a look at integration by parts.∫uv' dx = uv - ∫ vu' dx where the "dash" just represents the derivative i.e u' is du/dx and v' is dv/dx.We have to assign values to u and v'. When we multiply anything by 1 we get the same value as we started with so we will use this property to help us answer the question. Let's set u = ln(x) and v' = 1 u = ln(x) u'= ? v= ? v'= 1To obtain v, we must integrate v' which gives us a value of x. Similarly, we must differentiate u to obtain u' which, from memory, is 1/x.u = ln(x) u'= 1/x v= x v'= 1Substituting this into our equation about we get: ∫ln(x) dx = xln(x) - ∫x/x dx = xln(x) - ∫1 dxTherefore our final answer is: xln(x) -x + c Note: Don't forget the constant in indefinite integration!

JE
Answered by James E. Maths tutor

3236 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you differentiate 2^x?


Given that y=sin2x(3x-1)^4, find dy/dx


What are the conditions for an event to be modeled with the binomial distribution?


Two numbers add to make 1000. What would they have to be to maximise their product?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning