Emily bought 3 books and 2 apples, and she spent £19, while her brother, John, spent £15 on 1 book and 5 apples. What is the cost of one book and one apple?

First we assign, for example, that x = cost of 1 book, and y = cost of 1 apple. Then we make these into simultaneous equations, such as: 3x+2y=19 (eqn. 1) and x+5y=15 (eqn. 2). Now multiply eqn. 2 to get a common factor for x: (2)3 gives: 3x+15y=45 (eqn. 3). Now, we subtract (3) from (1), and eliminate x, so that we can solve for y: (3x+2y) - (3x+15y) = (19)-(45), which simplifies to: -13y=-26. Diving both sides by -13, we get y=2. We substitute this back into equation (1), which gives us: 3x+2(2)=19, expanding: 3x+4=19. Subtracting 4 from both sides, we get: 3x=15, and diving by three, we get x=5. So, the cost of a book is £5 and the cost of an apple is £2.

LU
Answered by Laura U. Maths tutor

2841 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Calculate the value of both x and y using the following 2 equations: 3x - 2y = 12 (1) and x - y = 3 (2)


You are given a sequence of numbers: -2, 12, 32, 58, 90, ... Work out the 7th term in this sequence.


(a) show that 3/10 + 2/15 = 13/30 (b) show that 2 5/8 ÷ 1 1/6 = 2 1/4


Write x/(x-1) - x/(x+1) as a single fraction in its simplest form (Edexcel GCSE 2016)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences