Separate (9x^2 + 8x + 10)/(x^2 + 1)(x + 2) into partial fractions.

First, we find the form of the two fractions we're going to get. As one denominator has a power of 2, and the other a power of 1, our answer will be of the form: [(Ax+B)/(x2+1)] + [C/(x+2)]. If we make this our Right Hand Side, and make the question's equation our Left Hand Side, and then multiply by our LHS denominator, we get 9x2+8x+10=(Ax+B)(x+2)+C(x2+1). If we then set x = -2, to eliminate our Ax+B term, so that we can solve for C, our equation becomes 9(-2)2+8(-2)+10=C[(-2)2+1], Simplifying, we get 30=5C, and solve C=6. We then put this back into the initial equation we made and move the C fraction to the other side, we get (Ax+B)/(x2+1) = [(9x2+8x+10)/(x+2)(x2+1)] - [6/(x+2)]. We then make our RHS into one single fraction, by multiplying the latter fraction, top and bottom, by (x2+1). If we then simplify the numerator of our new RHS, we get (3x2+8x+4)/(x+2)(x2+1). We can factorise the numerator to give us (3x+2)(x+2), and find that the x+2 cancels out with the denominator. Now, our whole equation becomes (Ax+B)/(x2+1) = (3x+2)/(x2+1). Equating our coefficients of x, we find that A = 3, B = 2. So, our final solution is: (9x2+8x+10)/(x+2)(x2+1) = [(3x+2)/(x2+1)] + [6/(x+2)].

LU
Answered by Laura U. Maths tutor

4168 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A particle is placed on a rough plane which is inclined to the horizontal at an angle θ, where tanθ =4/3, and released from rest. The coefficient of friction between the particle and the plane is 1/3. Find the particle's acceleration.


A Polynomial is defined as X^3-6X^2+11X-6. a)i Use the factor theorem to show that X-3 is a factor. ii Express as a linear and quadratic b)Find the first and second derivative c) Prove there is a maximum at y=0.385 to 3DP


How do I find the stationary points of a curve?


Find the area encompassed by y=(3-x)x^2 and y=x(4-x) between x=0 and x=2.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning