Why does the chain rule work?

One of the best ways to view dy/dx is as a fraction. When we have y=f(g(x)), we need to make a substitution u=g(x) to find dy/dx. This leaves us y=f(u) and u=g(x). Differentiating said terms leaves us with dy/du=f’(u) and du/dx = g’(x).But why does this help us? We’ve just made this more complicated by adding a new variable right? Well, that’s actually not true. If we multiply our two differentiated terms, you should be able to spot that the du terms cancel out (fraction cancellation), and thus we’re left with dy/dx. Then we sub back in our u=g(x). So dy/dx = f’(g(x))g’(x).

SV
Answered by Sam V. Maths tutor

3193 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Tom drink drives two days a week, the chance of him being caught per day is 1 in 100. What is the chance he will not be driving after a) one week? b) one year?


For sketching the graph of the modulus of f(x) (in graph transformations), why do we reflect in the x-axis anything that is below it?


if a^x= b^y = (ab)^(xy) prove that x+y =1


What is a derivative and how are they used?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning