Prove that the difference of the square of two consecutive odd numbers is always a multiple of 8. [OCR GCSE June 2017 Paper 5]

Part 1 of this question asks you to explain why 2n+1 is an odd number, so it is assumed that the student knows this already. The definition of any odd number is 2n+1. Since all consecutive odd numbers are two values apart, the next consecutive odd number is defined as 2n+3 (for all n). The square of the equations are: (2n+1)2=4n2+4n+1 (2n+3)2=4n2+12n+9. Then to find the difference we must subtract one equation from the other. It doesn't matter which way round you do this, the result will be ±(8n-8) = ±8(n-1). This solution shows that no matter what n is, it is being multiplied by 8: the result (the difference of the square of two consecutive odd numbers) is therefore always a multiple of 8.

JJ
Answered by Jon J. Maths tutor

9930 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

how would you solve the simultaneous equations 3x + 4y = 11, 5x - y = 3?


Solve the simultaneous equation: 2x + y = 18, x - y = 6


Write x^2 - 6x +7 in the form (x+a)^2 +b


Solve (x+1)/3+(2x+5)/4=2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning