A curve has the equation x^2 +2x(y)^2 + y =4 . Find the expression dy/dx in terms of x and y [6]

Integrate each term in terms of x, then integrate each term in terms of y Make sure you state in what form you are integrating. Remember if you are integration in terms of y, the x values are constants and vice versa 2x + 2(y^2) + (2x*2y)dy/dx + 1dy/dx = 0 2x + 2(y^2) + (4xy +1) dy/dx = 0 [4](4xy +1) dy/dx = -(2x + 2(y^2) )Therefore dy/dx = -(2x + 2(y^2) ) / (4xy +1) [2]

LC
Answered by Lavana C. Maths tutor

3609 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate xe^2


The equation of a line is y=e(^2x)-9 and the line has points at (0,a) and (b,0). Find the values of a and b.


What is the value of the integral of e^x from x = 1 to x = 2?


Let p(x) =30x^3 - 7x^2 -7x + 2. Prove that (2x+1) is a factor of p(x).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning