A curve has the equation x^2 +2x(y)^2 + y =4 . Find the expression dy/dx in terms of x and y [6]

Integrate each term in terms of x, then integrate each term in terms of y Make sure you state in what form you are integrating. Remember if you are integration in terms of y, the x values are constants and vice versa 2x + 2(y^2) + (2x*2y)dy/dx + 1dy/dx = 0 2x + 2(y^2) + (4xy +1) dy/dx = 0 [4](4xy +1) dy/dx = -(2x + 2(y^2) )Therefore dy/dx = -(2x + 2(y^2) ) / (4xy +1) [2]

LC
Answered by Lavana C. Maths tutor

3426 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

When I integrate by parts how do I know which part of the equation is u and v'?


Given y = 4x/(x^2 +5) find dy/dx, writing your answer as a single fraction in its simplest form


Differentiate with respect to x: (x^2+5)^3


What is the probability that a leap year has 53 Sundays?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences