A curve has the equation x^2 +2x(y)^2 + y =4 . Find the expression dy/dx in terms of x and y [6]

Integrate each term in terms of x, then integrate each term in terms of y Make sure you state in what form you are integrating. Remember if you are integration in terms of y, the x values are constants and vice versa 2x + 2(y^2) + (2x*2y)dy/dx + 1dy/dx = 0 2x + 2(y^2) + (4xy +1) dy/dx = 0 [4](4xy +1) dy/dx = -(2x + 2(y^2) )Therefore dy/dx = -(2x + 2(y^2) ) / (4xy +1) [2]

LC
Answered by Lavana C. Maths tutor

3524 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Let X be a normally distributed random variable with mean 20 and standard deviation 6. Find: a) P(X < 27); and b) the value of x such that P(X < x) = 0.3015.


Can you explain where the "Integration by parts" formula comes from?


A ball is thrown vertically upwards with a speed of 24.5m/s. For how long is the ball higher than 29.4m above its initial position? Take acceleration due to gravity to be 9.8m/s^2.


Find the integral on ln(x).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning