Find the an expression for dy/dx of the function y=(4x+1)ln(3x+1) and the gradient at the point x=1.

This question is example of product rule. To simplify need to define two terms u=4x+1 and v=ln(3x+1). Each term is then differentiated. du/dx=4. To differentiate v, need to define another term a=3x+1, therefore v=ln(a). Differentiate using chain rule, dv/dx=da/dxdv/da, therefore dv/dx=3/(3x+1). Product rule then states dy/dx=udv/dx+vdu/dx, therefore, dy/dx=(4x+1)(3/(3x+1))+4(ln(3x+1))dy/dx=(12x+3)/(3x+1)+4ln(3x+1)To find the gradient at the point x=1, need to substitute into dy/dx.dy/dx(x=1)=(12+3)/(3+1)+4ln(3+1)=15/4+4ln4=9.295

WS
Answered by William S. Maths tutor

4485 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The equation of a curve C is (x+3)(y-4)=x^2+y^2. Find dy/dx in terms of x and y


The mass, m grams, of a substance is increasing exponentially so that the mass at time t hours is m=250e^(0.021t). Find the time taken for the mass to double in value.


What is the chain rule?


Let w, z be complex numbers. Show that |wz|=|w||z|, and using the fact that x=|x|e^{arg(x)i}, show further that arg(wz)=arg(w)+arg(z) where |.| is the absolute value and arg(.) is the angle (in polar coordinates). Hence, find all solutions to x^n=1 .


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning