Find the an expression for dy/dx of the function y=(4x+1)ln(3x+1) and the gradient at the point x=1.

This question is example of product rule. To simplify need to define two terms u=4x+1 and v=ln(3x+1). Each term is then differentiated. du/dx=4. To differentiate v, need to define another term a=3x+1, therefore v=ln(a). Differentiate using chain rule, dv/dx=da/dxdv/da, therefore dv/dx=3/(3x+1). Product rule then states dy/dx=udv/dx+vdu/dx, therefore, dy/dx=(4x+1)(3/(3x+1))+4(ln(3x+1))dy/dx=(12x+3)/(3x+1)+4ln(3x+1)To find the gradient at the point x=1, need to substitute into dy/dx.dy/dx(x=1)=(12+3)/(3+1)+4ln(3+1)=15/4+4ln4=9.295

WS
Answered by William S. Maths tutor

3964 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the area under the graph of (x^2)*sin(x) between 0 and pi


Show that the derivative of tan(x) is sec^2(x), where sec(x) is defined as 1/cos(x). [Hint: think of tan(x) as a quotient of two related functions and apply the appropriate identity]


find dy/dx at t, where t=2, x=t^3+t and y=t^2+1


Find dy/dx at t=3, where x=t^3-5t^2+5t and y=2t^2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences