Prove algebraically that the square of any odd number is always also an odd number.

Firstly, an algebraic expression of an odd number should be identified, such as 2n+1 or 2n-1. Doing this would also indicate the knowledge that 2n is always an even number, which will be important further on. This should then be written out as (2n+1)(2n+1). Multiplying these two expressions together gives us 4n2 +2n + 2n +1, or 4n2 +4n +1.In order to prove this is odd, we can simply take a factor of 2 out of the first 2 terms to leave us with 2(2n2 +2n) +1. If we now refer to 2n2 +2n as x, we can rewrite this equation as 2x +1, which is the same algebraic expression we used to identify a number as odd. We can thus deduce that the square of any odd number is also always odd.

MH
Answered by Matthew H. Maths tutor

21021 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Which has greater area? A parallelogram with base length 10cm and perpendicular height 6cm, or a circle of diameter 8cm.


Solve the simultaneous equations: 3x+2y=4 and 2x+y=3


All tickets for a concert are at the same price. Amy and Dan pay £63 altogether for some tickets. Amy pays £24.50 for 7 tickets. How many tickets does Dan buy?


Solve the simultaneous equations: 3x + y =11; 2x + y = 8


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning