Prove algebraically that the square of any odd number is always also an odd number.

Firstly, an algebraic expression of an odd number should be identified, such as 2n+1 or 2n-1. Doing this would also indicate the knowledge that 2n is always an even number, which will be important further on. This should then be written out as (2n+1)(2n+1). Multiplying these two expressions together gives us 4n2 +2n + 2n +1, or 4n2 +4n +1.In order to prove this is odd, we can simply take a factor of 2 out of the first 2 terms to leave us with 2(2n2 +2n) +1. If we now refer to 2n2 +2n as x, we can rewrite this equation as 2x +1, which is the same algebraic expression we used to identify a number as odd. We can thus deduce that the square of any odd number is also always odd.

MH
Answered by Matthew H. Maths tutor

23608 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

factorise: 3x^2+13x-30


Give the prime factorisation of 630


Jules buys a washing machine. 20% VAT is added to the price of the washing machine. Jules then has to pay a total of £600 What is the price of the washing machine with no VAT added?


Insert a pair of brackets into this question to make it correct 2 + 5 x -6 = -42


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning