Prove that 1/(tanx) + tanx = 1/sinxcosx

The key here is to realise that tanx = sinx/cosx. If we write out the left hand side of the equation in terms of sine and cosine we get: cosx/sinx + sinx/cosx These two fractions can be put over a common denominator of sinxcosx to give: (cos2x + sin2x)/sinxcosx If we then use the well-known identity cos2x + sin2x = 1, we see that the above expression is equivalent to 1/sinxcosx, which is the expression we were required to find.

HM
Answered by Hannah M. Maths tutor

22221 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the integral of ln(x)


Find where the graph of y=3x^2+7x-6 crosses the x axis


At t seconds, the temp. of the water is θ°C. The rate of increase of the temp. of the water at any time t is modelled by the D.E. dθ/dt=λ(120-θ), θ<=100 where λ is a pos. const. Given θ=20 at t=0, solve this D.E. to show that θ=120-100e^(-λt)


How do you avoid making silly mistakes in a maths exam?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning