Prove that 1/(tanx) + tanx = 1/sinxcosx

The key here is to realise that tanx = sinx/cosx. If we write out the left hand side of the equation in terms of sine and cosine we get: cosx/sinx + sinx/cosx These two fractions can be put over a common denominator of sinxcosx to give: (cos2x + sin2x)/sinxcosx If we then use the well-known identity cos2x + sin2x = 1, we see that the above expression is equivalent to 1/sinxcosx, which is the expression we were required to find.

HM
Answered by Hannah M. Maths tutor

21076 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

I did all the past papers but I still only achieved a C grade, what am I doing wrong?


I don’t think I’m smart enough for this course, should I drop it?


Show that sqrt(27) + sqrt(192) = a*sqrt(b), where a and b are prime numbers to be determined


Turning points of the curve y = (9x^2 +1)/3x+2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences