Prove that 1/(tanx) + tanx = 1/sinxcosx

The key here is to realise that tanx = sinx/cosx. If we write out the left hand side of the equation in terms of sine and cosine we get: cosx/sinx + sinx/cosx These two fractions can be put over a common denominator of sinxcosx to give: (cos2x + sin2x)/sinxcosx If we then use the well-known identity cos2x + sin2x = 1, we see that the above expression is equivalent to 1/sinxcosx, which is the expression we were required to find.

HM
Answered by Hannah M. Maths tutor

22121 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y=x^3


What is the area bound by the x-axis, the lines x=1 and x=3 and the curve y=3x^(2)-1/x ? Answer in exact form.


How do I find the distance between two point in the plane?


Find, using calculus, the x coordinate of the turning point of the curve y=e^(3x)*cos(4x) pi/4<x<pi/2 (Edexcel C3)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning