Prove that 1/(tanx) + tanx = 1/sinxcosx

The key here is to realise that tanx = sinx/cosx. If we write out the left hand side of the equation in terms of sine and cosine we get: cosx/sinx + sinx/cosx These two fractions can be put over a common denominator of sinxcosx to give: (cos2x + sin2x)/sinxcosx If we then use the well-known identity cos2x + sin2x = 1, we see that the above expression is equivalent to 1/sinxcosx, which is the expression we were required to find.

HM
Answered by Hannah M. Maths tutor

21359 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve C has the equation y=5sin3x + 2cos3x, find the equation of the tangent to the curve at the point (0,2)


Given the equation 3x^2 + 4xy - y^2 + 12 = 0. Solve for dy/dx in terms of x and y.


Given that sin(x)^2 + cos(x)^2 = 1, show that sec(x)^2 - tan(x)^2 = 1 (2 marks). Hence solve for x: tan(x)^2 + cos(x) = 1, x ≠ (2n + 1)π and -2π < x =< 2π(3 marks)


How do I work out what integration method I should use to solve an integral?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning