Curve C has equation y=(9+11x)/(3-x-2x^2). Find the area of the curve between the interval (0, 1/2). State your answer in exact terms.

The word "area" should highlight that it is an integration question to the student. The interval asked for is (0,1/2) and so the curve should be integrated between that interval.The first task is to separate the equation into partial fractions, as the denominator seems like a quadratic that could be factorised. Once split into partial fractions of denominators (1-x) and (3+2x), each fraction should be interfrated individually to give:(-4ln(1-x)-3/2ln(3+2x)). This should be evaluated between the values x=0 and x=1/2 since we are finding a definite integral.They have asked for an exact answer so gather the ln terms and state it in the simplified way: 3/2ln(3/4)-4ln(1/2) .

IA
Answered by Isha A. Maths tutor

2619 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has parametric equations x=t(t-1), y=4t/(1-t). The point S on the curve has parameter t=-1. Show that the tangent to the curve at S has equation x+3y+4=0.


How do you complete the square?


Solve the inequality x^2 > 3(x + 6)


Find the turning points on the curve with the equation y=x^4-12x^2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences