Curve C has equation y=(9+11x)/(3-x-2x^2). Find the area of the curve between the interval (0, 1/2). State your answer in exact terms.

The word "area" should highlight that it is an integration question to the student. The interval asked for is (0,1/2) and so the curve should be integrated between that interval.The first task is to separate the equation into partial fractions, as the denominator seems like a quadratic that could be factorised. Once split into partial fractions of denominators (1-x) and (3+2x), each fraction should be interfrated individually to give:(-4ln(1-x)-3/2ln(3+2x)). This should be evaluated between the values x=0 and x=1/2 since we are finding a definite integral.They have asked for an exact answer so gather the ln terms and state it in the simplified way: 3/2ln(3/4)-4ln(1/2) .

IA
Answered by Isha A. Maths tutor

3114 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Line AB, with equation: 3x + 2y - 1 = 0, intersects line CD, with equation 4x - 6y -10 = 0. Find the point, P, where the two lines intersect.


Find the stationary point of the function f(x) = x^2 +2x + 5


How to differentiate using the Product Rule


A curve C has equation y = 3x^4 - 8x^3 - 3. Find dy/dx and d2y/dx2. Verify C has a stationary point at x = 2. Determine the nature of this stationary point, giving a reason for the answer.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning