Curve C has equation y=(9+11x)/(3-x-2x^2). Find the area of the curve between the interval (0, 1/2). State your answer in exact terms.

The word "area" should highlight that it is an integration question to the student. The interval asked for is (0,1/2) and so the curve should be integrated between that interval.The first task is to separate the equation into partial fractions, as the denominator seems like a quadratic that could be factorised. Once split into partial fractions of denominators (1-x) and (3+2x), each fraction should be interfrated individually to give:(-4ln(1-x)-3/2ln(3+2x)). This should be evaluated between the values x=0 and x=1/2 since we are finding a definite integral.They have asked for an exact answer so gather the ln terms and state it in the simplified way: 3/2ln(3/4)-4ln(1/2) .

IA
Answered by Isha A. Maths tutor

2887 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

i) Simplify (2 * sqrt(7))^2 ii) Find the value of ((2 * sqrt(7))^2 + 8)/(3 + sqrt(7)) in the form m + n * sqrt(7) where n and m are integers.


Compare the following logarithms in base 1/2 without a calculator: log(8) and log(512)


Express 6cos(2x)+sin(x) in terms of sin(x). Hence solve the equation 6cos(2x) + sin(x) = 0, for 0° <= x <= 360°.


What exactly IS differentiation?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning