How to solve the maths GCSE question about Hannah's sweets that went viral

Students took to Twitter to moan about how difficult the question was.

I agree, there is something inherently comic about the question, since you start off talking about Hannah and sweets and then - BANG - all of a sudden you get a scary-looking equation. 

But READ THE QUESTION. The question is not asking you to solve the equation. It is asking you to do some basic probability.

Let’s solve it:

If Hannah takes a sweet from the bag on her first selection, there is a 6/n chance it will be orange.

That’s because there are 6 oranges and n sweets.

If Hannah takes a sweet from the bag on her second selection, there is a 5/(n-1) chance it will be orange.

That’s because there are only 5 orange sweets left out of a total of n - 1 sweets.

The chance of getting two orange sweets in a row is the first probability MULTIPLIED BY the second one. (That’s the most important thing to learn from your lesson today, peeps!)

Which is 6/n x 5/n–1

The question tells us that the chance of Hannah getting two orange sweets is 1/3.

So: 6/n x 5/n–1 = 1/3

All we need to do now is rearrange this equation.

(6x5)/n(n-1) = 30/(n2 – n) = 1/3

Or 90/(n2 – n) = 1

So (n2 – n) = 90

Voila: n2 – n – 90 = 0

MB
Answered by MINGWEN B. Maths tutor

9053 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Integrate ∫_(-1)^1 3/√(x+2) dx using the substitution u x+2


Expand and simplify (x+12)(x-3)


Solve the simultaneous equations algebraically.


We are given a right angled triangle with one side of unknown length. The shortest side is 3cm long, and the longest side is 5cm long. Calculate the remaining side.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning