The equation " x^3-3x+1=0 " has three real roots. Show that one of the roots lies between −2 and −1

A simple way to prove this is to sub in the values that we are given. so f(x) will represent our equation x^3-3x+1 (that is f(x) = x^3-3x+1)f(-2) = -1 < 0f(-1) = 3 > 0The first thing we notice is that both answers are either side of zero. this is good as it indicates that if we where to graph the curve then one point will be at exactly zero and hence a root. For our previous statement to be correct we just need to know that the curve is continuous which it is. so hence this proves that there is a root between our two values

JB
Answered by James B. Maths tutor

9271 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express the following as a partial fraction: (4x^2+12x+9) / (x^2+3x+2) .


If f(x)=x^2 and g(x)=5x-11, then what is fgg(x) when x=3?


For a curve of gradient dy/dx = (2/(x^2))-x/4, determine a) d^2y/dx^2 b) the stationary point where y=5/2 c) whether this is a maximum or minmum point and d) the equation of the curve


Solve the simultaneous equations: x^2 + y^2 = 10 and x + 2y = 5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning