How do I solve simultaneous equations?

Let's use an example.

x+y=6

2x+3y=14

Find the values of x and y.

When I was kid back then, I was always wondering why are equations important? Well, for me, its because we want to be precise with our asnwers. 

x+y=6. There are many answers to this. Including:-

4+2

3+3

even 7+(-1)

therefore, what method should we use to ensure our calculation is accurate?

well, we have 2 equations. lets remove one variable out of the picture so we are left with only one

at the beginning, x+y=6 ......equation 1

                         2x+3y=14........equation 2

now, we decided to remove either x or y because removing either one of them will make it so much easier to find a specific value for x or y.

to do this, let's decide to remove x as an example.

multiplying equation 1 by 2 gives us,

2x+2y=12.....set this to equation 3

remember equation 2? 2x+3y=14

it can be seen now that we can remove 2x by performing equation 3-equation2 which gives us:-

y=2

we now have a value for y which is great so let's find value x by placing y=2 into equation 1, 2 or 3 since we already have a value.

let us take equation 1 in this case.

x+y=6

y=2, therefore, x+2=6

and x=6-2

        =4

and this, x=4 and y=2

to check our answers, we can place the values of x and y into any equations to find whether out answers match.

using equation 3,

2x+2y=12

2(4)+2(2)=8+4=12

and this is how we know our answers are correct! 

WH
Answered by Wilson H. Maths tutor

5067 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The number of uniform spherical shots that can be made from a given mass of lead varies inversely to the cube of the radius. When the radius is 1mm the number of shots made is 2744. How many shots of radius 1.4mm can be made from the same mass.


How do i answer a problem solving question if I don't know where to start?


A pizza has a radius of 12cm. Calculate the area of the pizza in cm² , giving your answer as a multiple of π.


LOWER TIER a) Multiply the following out: (x+3)(x-4). b) Factorise the following equation into two bracket form: x^2+7x+12


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences