Evaluate the integral ∫2x√(x^2 +1) dx

The first step is deciding on the method of integration. For this integral it makes the most sense to use substitution.Let u = x2 + 1Differentiate w.r.t x => du/dx = 2xRearrange for dx=> du/2x = dx Substitute into the Original integral ∫2x√(u) du/2x= ∫√(u) du= (2/3) u2/3 + c= (2/3 )(x2 + 1)2/3 + c

SC
Answered by Sam C. Maths tutor

8939 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the derivative of x^x


Factorise completely x-4x^3


Find the coordinates of the minimum point on the curve: y = x^2 - x - 2


Example of product rule - if y=e^(3x-x^3), what are the coordinates of stationary points and what are their nature?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning