How is an action potential fired?

When a neurone is at rest, the outside of the neurone is more positive than the inside. This is due to the sodium-potassium pump which actively pumps 3 Na+ outside the cell, whilst at the same time pumping 2 K+ inside the cell. This creates a potential difference of -70mV, known as the resting potential. If a receptor is stimulated, there is a change in the permeability of the membrane, as Na+ channels open, allowing many Na+ ions to move into the cell, down a concentration gradient. This is called depolarisation, and causes the inside of the cell to become more positive than the outside. If the potential difference reaches about -50mV, an action potential will be fired. This is known as the threshold value. The potential difference keeps increasing until it reaches about +40mV. At this point, the Na+ channels close, and K+ channels open allowing K+ to leave the cell. The cell becomes repolarised, as the potential difference decreases and approaches the resting potential. However, the potential difference goes slightly below the resting potential, as there is a slight delay before the K+ channels close. This is called hyperpolarisation. The potential difference then returns to the resting potential.

EB
Answered by Eleanor B. Biology tutor

4534 Views

See similar Biology A Level tutors

Related Biology A Level answers

All answers ▸

Describe the structure of glycogen


What is the bonding in a DNA double helix


Using a genetic diagram, identify the genotypes of the F2 generation of pea pods if a homozygous green pod and a homozygous yellow pod were crossed initially. The yellow pod contained recessive alleles (g).


Maltose is hydrolysed by the enzyme maltase. Explain why maltase catalyses only this reaction.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning