For what values of x is 2x^2 - 11x - 6 > 0 ?

The first step is to factorise the equation into two brackets. In this case we get (2x+1)(x-6)Now, for this to be greater than zero we need both brackets to be greater than zero, or both brackets to be less than zero. If one bracket was positive and the other negative, then the equation would be negative overall.So firstly, if they are both positive, 2x+1 > 0 tells us that x > -1/2. x - 6 > 0 tells us that x > 6. If we put these together then both inequalities have to be satisfied, so x has be be greater than 6. Now if they are both negative, 2x+1 < 0 tells us that x < -1/2. x-6 <0 tells us that x < 6. So overall x < -1/2 in order to satisfy both. So to conclude, we need x > 6 or x < -1/2 for the equation to be greater than zero.

RK
Answered by Rowan K. Maths tutor

3301 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Thomas wants to see how far he can throw a javelin. He records four of his throws as 45 metres, 40 metres, 55 metres, and x metres. Given that the mean of Thomas' throws is 50, determine the value of x.


The equation the line L1 is y=3x-2 and the equation of line L2 is 3y-9x+5=0. Show that these two lines are parallel.


Solve 4x^2 - 3x - 4 = 0


Solve the simultaneous equations 3x+2y=8 and 3y+4x=11


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences