For what values of x is 2x^2 - 11x - 6 > 0 ?

The first step is to factorise the equation into two brackets. In this case we get (2x+1)(x-6)Now, for this to be greater than zero we need both brackets to be greater than zero, or both brackets to be less than zero. If one bracket was positive and the other negative, then the equation would be negative overall.So firstly, if they are both positive, 2x+1 > 0 tells us that x > -1/2. x - 6 > 0 tells us that x > 6. If we put these together then both inequalities have to be satisfied, so x has be be greater than 6. Now if they are both negative, 2x+1 < 0 tells us that x < -1/2. x-6 <0 tells us that x < 6. So overall x < -1/2 in order to satisfy both. So to conclude, we need x > 6 or x < -1/2 for the equation to be greater than zero.

RK
Answered by Rowan K. Maths tutor

3662 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

ABCD is a square of side 10 cm. Each side of the square is a tangent to the circle. Work out the total area of the shaded regions in terms of . Give your answer in its simplest form.


Factorise and solve the quadratic : 3x^2 + 15x +18 = 0


How do I solve simultaneous equations? Such as 2x + 4y = 8, 3x + 2y = 8.


If one shop has melons for sale on a buy one get one free offer at £2 a melon with each melon weighing 2kg, and a second shop offering melons at 30p per kilogram. Which shop is the best value for money?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning