Given df/dx=2x+3 and the graph goes through (1,1), what is the function f?

First step: integrate int df/dx = x^2+3x+c (never forget the constant!) 

Second step: substitute the point in order to get c 

1 = (1)^2+3*1+c -> c = 1-1-3=-3

Thus, f = x^2+3x-3

EG
Answered by Evita G. Maths tutor

4837 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve 8(4^x ) – 9(2^x ) + 1 = 0


Line AB, with equation: 3x + 2y - 1 = 0, intersects line CD, with equation 4x - 6y -10 = 0. Find the point, P, where the two lines intersect.


p(x)=2x^3 + 7x^2 + 2x - 3. (a) Use the factor theorem to prove that x + 3 is a factor of p(x). (b) Simplify the expression (2x^3 + 7x^2 + 2x - 3)/(4x^2-1), x!= +- 0.5


A particle, P, moves along the x-axis. The displacement, x metres, of P is given by 0.5t^2(t^2 - 2t + 1), when is P instantaneously at rest


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning