Given df/dx=2x+3 and the graph goes through (1,1), what is the function f?

First step: integrate int df/dx = x^2+3x+c (never forget the constant!) 

Second step: substitute the point in order to get c 

1 = (1)^2+3*1+c -> c = 1-1-3=-3

Thus, f = x^2+3x-3

EG
Answered by Evita G. Maths tutor

4682 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that: 2tanθsinθ = 4 - 3cosθ , show that: 0 = cos²θ - 4cosθ + 2 .


Expand and simplify (n + 2)^3 − n^3.


Use implicit differentiation to find dy/dx of: 2(x^2)y + 2x + 4y - cos((pi)y) = 17


What does dy/dx represent?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning