Given that 9 sin^2y-2 sin y cos y=8 show that (tany - 4)(tany + 2)= 0

This question requires us to make use of the trigonometric identities tan(y)=sin(y)/cos(y) and sin^2y + cos^2y = 1 which are given in the formula sheet of the exam. Since we know that sin(y)/cos(y) can be substituted for tan(y), our objective is to create some form of sin(y)/cos(y) in the first equation to enable us to get to tan(y). Therefore, we divide the first equation by cos^2y. This gets us9sin^2y/cos^2y - 2sinycosy/cos^2y = 8/cos^2ySince sin(y)/cos(y)=tan(y), this means that sin^2(y)/cos^2(y) = tan^2(y). Therefore, we can simplify the above equation to 9tan^2y-2tany=8/cos^2y. Now we have the equation in tan(y) form but we need to get rid of the cos^2y denominator and further simplify the equation. Using the sin^2y+cos^2y=1 identity, we can replace 8 by 8(cos^2y+sin^2y). We can simplify 8(cos^2y+sin^2y)/cos^2y by cancelling out the top cos^2y and converting the sin^2y/cos^2y part into tan^2y. This gets us 9tan^2y-2tany=8+8tan^2y. We must remember to keep the the first 8 as we must multiply the 1 we simplified the cos^2y/cos^2y into by 8 as 8 is outside of the brackets. From here, we bring 8+8tan^2y to the left hand side by subtracting them both from the LHS. From doing this we get tan^2y-2tany-8=0 which we can factorise to get the final equation (tany-4)(tany+2)=0

SG
Answered by Swetha G. Maths tutor

4495 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Particle A mass 0.4kg and B 0.3kg. They move in opposite direction and collide. Before collision, A had speed 6m/s and B had 2m/s. After collision B had 3m/s and moved in opposite direction. Find speed of A after collision with direction and Impulse on B.


How do I remember the coefficients of a Taylor expansion?


A curve has the equation y=12+3x^4. Find dy/dx.


There is a Ferris wheel where the passengers are placed 10m away from the centre. At what speed must they be moving in order for them to feel completely weightless at the top of the wheel.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning