Use the substitution u=1+e^x to find the Integral of e^(3x) / (1 + e^x)

ex=u-1 so e3x=(u-1)3 and du/dx = ex so rearranging gives dx=e-x du Substituting all that information in the integral we get Integral ( (u-1)3/ (u(u-1)) du ) which simplifies to Integral (u -2 +1/u).Integrating we get u2/2 -2u + ln u + C and substituting the original variable we get (1+ex)2/2 -2(1+ex) + ln (1+ex) + C

IP
Answered by Ismet P. Maths tutor

11537 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

SOLVE THE FOLLOWING SIMULTANEOUS EQUATIONS: 5x^2 + 3x - 3y = 4, -4x - 6y + 5x^2 = -7


Integral of 1/(x^3 + 2x^2 -x - 2)


How do you integrate ?


How do you find the point of intersection of two vector lines?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning