Use the substitution u=1+e^x to find the Integral of e^(3x) / (1 + e^x)

ex=u-1 so e3x=(u-1)3 and du/dx = ex so rearranging gives dx=e-x du Substituting all that information in the integral we get Integral ( (u-1)3/ (u(u-1)) du ) which simplifies to Integral (u -2 +1/u).Integrating we get u2/2 -2u + ln u + C and substituting the original variable we get (1+ex)2/2 -2(1+ex) + ln (1+ex) + C

IP
Answered by Ismet P. Maths tutor

11543 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the simultaneous equation: y+4x+1=0 y^2+5x^2+2x=0


Given that (cos(x)^2 + 4 sin(x)^2)/(1-sin(x)^2) = 7, show that tan(x)^2 = 3/2


Integrate 1/(1 - 3*x) with respect to x


How would you show that a vector is normal to a plane in 3D space?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning