Explain the Chain Rule

The chain rule is used to differentiate composite functions, ie "a function of a function". In this case we have an outer function and an inner function. For example

Differentiate f(g(x)). Here f is the outer function and g the inner. 

The derivative of this function is found by differentiating the outer function and evaluating its derivative at the point g(x) and then multiplying by the derivative of g(x):

f(g(x))' = f'(g(x))g'(x)

AC
Answered by Alex C. Maths tutor

3968 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use the substitution u = 6 - x^2 to find the value of the integral of (x^3)/(sqrt(6-x^2)) between the limits of x = 1 and x = 2 (AQA core 3 maths


Integrate ln(x) by parts then differentiate to prove the result is correct


If x^2 + 4x + 3xy + y^3 = 6, find the first derivative.


Simultaneous Equations


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences