Explain the Chain Rule

The chain rule is used to differentiate composite functions, ie "a function of a function". In this case we have an outer function and an inner function. For example

Differentiate f(g(x)). Here f is the outer function and g the inner. 

The derivative of this function is found by differentiating the outer function and evaluating its derivative at the point g(x) and then multiplying by the derivative of g(x):

f(g(x))' = f'(g(x))g'(x)

AC
Answered by Alex C. Maths tutor

4078 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the binomial expansion of (4-8x)^(-3/2) in ascending powers of x, up to and including the term in x^3. Give each coefficient as a fraction in its simplest form. For what range of x is a binomial expansion valid?


What are partial fractions for and how do I find them?


Express 3/2x+3 – 1/2x-3 + 6/4x^2-9 as a single fraction in its simplest form.


What are the solutions of (x^3)+6 = 2(x^2)+5x given x = 3 is a solution?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning