Expand and simplify 3(2x + 5) – 2(x – 4)

Firstly, to expand an equation like this, you must multiply the brackets by the number outside of the brackets. Make sure that you multiply every number inside the bracket by the number directly outside, and remember the signs:

3(2x + 5) - 2(x-4) becomes

(3 x 2x) + (3 x 5) + (-2 x x) + (-2 x -4) = 

6x + 15 - 2x + 8 (remember that '-' x '-' = '+')

Then you need to do something called 'collecting the like terms'. This means collecting together all the 'x' terms and all of the 'number' terms, like this:

6x + 15 - 2x + 8 becomes

(6x - 2x) + (15 + 8), working this out means the answer is:

4x + 23

AK
Answered by Anna K. Maths tutor

78100 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve 2x+3 + ((4x-1)/2) = 10


Using the quadratic equation, solve 3x^2+2x-15 to two decimal places.


Expand and simplify x(x+4)(x-5)


Solve algebraically 6a + b = 16 and 5a - 2b = 19


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning