Expand and simplify 3(2x + 5) – 2(x – 4)

Firstly, to expand an equation like this, you must multiply the brackets by the number outside of the brackets. Make sure that you multiply every number inside the bracket by the number directly outside, and remember the signs:

3(2x + 5) - 2(x-4) becomes

(3 x 2x) + (3 x 5) + (-2 x x) + (-2 x -4) = 

6x + 15 - 2x + 8 (remember that '-' x '-' = '+')

Then you need to do something called 'collecting the like terms'. This means collecting together all the 'x' terms and all of the 'number' terms, like this:

6x + 15 - 2x + 8 becomes

(6x - 2x) + (15 + 8), working this out means the answer is:

4x + 23

AK
Answered by Anna K. Maths tutor

78634 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Sketch a graph of the equation of y=3x+2


A curve (a) has equation, y = x^2 + 3x + 1. A line (b) has equation, y = 2x + 3. Show that the line and the curve intersect at 2 distinct points and find the points of intersection. Do not use a graphical method.


How should I divide up my time during the exam?


Work out the value of (√3 )² x (√2 )²


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning