Show that the square of any odd number is an odd number

We can talk about any integer (or whole number) with the variable n. n could be any integer, 2, 3 or 100 or 5 billion and 1!If n is any integer, then what numbers could be written as 2n? These are the even numbers. How do I know they would all be even? (They can be divided by 2)How could I generalise all the odd numbers in the same way? (2n+1)We are interested in looking at the squares of odd numbers, so (2n+1)2 or (2n+1)(2n+1)= 4n2+ 4n + 1 We want to know if this is an odd number. We already know that an odd number can be written as an even number plus 1 and we can therefore rearrange: 4n2+ 4n + 1 = 2(2n2+ 2n) + 1, 2(2n2+ 2n) has to be even as whatever is in the brackets is then multiplied by 2. Therefore 2(2n2+ 2n) + 1 has to be odd for any integer n!

AT
Answered by Alice T. Maths tutor

4839 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Frank buys a car at the start of 2015, for £12,000. Each year the value fo the car depreciates by 9%. What was the value of the car at the end of 2019?


Rana sells 192 cakes in the ratio small : medium : large = 7 : 6 : 11. medium cakes are worth double small ones and large cakes triple small ones. If the cakes go for £532.48 how much is a small cake worth


5w -3 = 3w + 15


How to find the equation of a line from a graph?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning