Show that the square of any odd number is an odd number

We can talk about any integer (or whole number) with the variable n. n could be any integer, 2, 3 or 100 or 5 billion and 1!If n is any integer, then what numbers could be written as 2n? These are the even numbers. How do I know they would all be even? (They can be divided by 2)How could I generalise all the odd numbers in the same way? (2n+1)We are interested in looking at the squares of odd numbers, so (2n+1)2 or (2n+1)(2n+1)= 4n2+ 4n + 1 We want to know if this is an odd number. We already know that an odd number can be written as an even number plus 1 and we can therefore rearrange: 4n2+ 4n + 1 = 2(2n2+ 2n) + 1, 2(2n2+ 2n) has to be even as whatever is in the brackets is then multiplied by 2. Therefore 2(2n2+ 2n) + 1 has to be odd for any integer n!

AT
Answered by Alice T. Maths tutor

4841 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do I know the best way to solve a quadratic equation?


A pen is the shape of an equilateral triangle. A goat is attached to a corner of the pen on a rope. The goat eats all the grass it can reach. It can just reach the opposite fence of the pen. What percentage of the grass in the pen does the goat eat?


f(x)=x^2+12x+32=0, solve for x


Factorise (x^2-100) and then solve for x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning