A curve with equation y = f(x) passes through the point (4,25). Given that f'(x) = (3/8)*x^2 - 10x^(-1/2) + 1, find f(x).

f'(x) = (3/8)x^2 - 10x^(-1/2) + 1Each term must be integrated (increase the power by 1 and divide by the new power), remembering to include + c.f(x) = (3/8)(x/3)^3 - 10*(2x)^(1/2) + x + cf(x) = (1/8)x^3 - 20 x^(1/2) + x + c = ySubstitute the given values for x and y into the equation, rearrange to find c.25 = (1/8)4^3 - 20 4^(1/2) + 4 + c c = 53Therefore f(x) = (1/8)*x^3 - 20x^(1/2) + x + 53

OW
Answered by Oliver W. Maths tutor

8403 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the simultaneous equations: x^2 + 8x + y^2; x - y = 10.


How to differentiate x^2 + y^2 - 2x + 6y = 5


Find the value of x in (4^5⋅x+32^2)⋅2^5=2^16⋅x


The gradient of a curve is given by dy/dx = 6sqrt(x) + 2. The curve passes through the point (16, 38). Find the equation of the curve.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning