Solve the simultaneous equation: 4x-11y=34 and 2x+6y=-6

When solving a simultaneous equation, we will use the elimination method. This method sees us removing or ‘eliminating’ the x or y term. First we need to find the lowest common multiple of the x and y terms from both equations, so it is 4 for the x term, and 66 for the y term. We will choose to eliminate x as this has the lowest common multiple of 4. Hence, we must multiply the second equation by 2, so both x values are 4. This gives us 4x-11y=34 and 4x+12y=-12. To remove the x value, we can subtract the first equation from the second. This leaves us 23y=-46, y=-46/23, thus y=-2. If we then substitute this value into the first equation, we get 4x+22=34. 4x=12, so x=12/4 leaving x=3

CB
Answered by Charlie B. Maths tutor

2981 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Without expanding any brackets, work out the solutions of 9(x+3)^2 = 4


3n + 2 < 14, and 6n / (n ^2 + 5) >1. Find the values that n can take.


Find the solutions to the quadratic equation x^2-9x+20=0


For the equation x^2 - 2x - 8 = y find: (a) The roots. (b) The y-intercept. (c) The coordinate of the turning point


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning