log_a(36) - log_a(4) = 0.5, what is a?

This is an example of a question you might face during a higher maths examination. It is also a great question to test what your understanding of logarithms and powers are. I have given a quick explanation below which could be extended if a student got stuck.
To do this questions we must know a few things. First, we can simplify the left hand side of this equation such that:
LHSloga(36) - loga(4) = loga(36/4) = loga(9)
Here we had to remember that when we subtract two logarithms, this is equivalent to taking the logarithm of the division of these numbers. Now that we have simplified the left hand side of the equation, we can now re-write the problem as:
loga(9) = 0.5
We must remember that a logarithm and a power are inverse operations of one another (simplified explanation). In the end we can get rid of a logarithm by taking it to the power of its base. As usual, any operation we do has to be done to both sides of the equation giving:
alog_a(9) = a0.5
9 = a0.5
This trick allows us to get rid of the logarithm and now simply calculate for a. In order to get rid of the power to one half which we have on the rhs, we can square both sides of the equation giving:
92 = (a0.5*a0.5)
which givesa = 81.

NA
Answered by Nasir A. Maths tutor

1007 Views

See similar Maths Scottish Highers tutors

Related Maths Scottish Highers answers

All answers ▸

Find the gradient of the straight line with equation 4x+3y=12


A circle has equation x^2+y^2-8x+10y+41=0. A point on the circle has coordinates (8,-3). Find the equation of the tangent to the circle passing through this point.


y=x^3-3x^2+2x+5 a)Write down the coordinates of P the point where the curve crosses the x-axis. b)Determine the equation of the tangent to the curve at P. c)Find the coordinates of Q, the point where this tangent meets the curve again.


Find the x-coordinates of the stationary points on the graph with equation f(x)= x^3 + 3x^2 - 24x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences