A ship is 180 kilometres away from a port P on a bearing of 63 degrees. Another ship is 245 kilometres away from port P on a bearing of 146 degrees. Calculate the distance between the two ships.

While this problem could be done simply by inputting the appropriate numbers into the correct formula, it is good practice to draw a diagram of the problem in order to minimise any silly mistakes that may be made. Upon drawing the diagram you should be able to see that the placement of the two ships(which we can call A and B) and the port make a triangle and that the information you are given enables you to use the cosine rule to calculate the distance between the two ships.
We can calculate the angle between ship A and ship B is (146-63), since the bearing of ship B is taken from port. The distance between the two ships can be assigned to the variable c.The values are substituted into the cosine rule to result in : c^2 = (180^2) + (245^2) -(2180245*cosC)This is simplified to: c^2 = 81676.12Therefore c = 285.8 kilometres.

SG
Answered by Saeed G. Maths tutor

7918 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The straight line L1 passes through the points with coordinates (4, 6) and (12, 2) The straight line L2 passes through the origin and has gradient -3. The lines L1 and L2 intersect at point P. Find the coordinates of P.


Solve 5w – 3 = 3w + 15


A right angled triangle has sides of length 3 and length 4, what is the length of the hypotenuse?


Solve the equation x^2 + 10x + 24 = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning