A ship is 180 kilometres away from a port P on a bearing of 63 degrees. Another ship is 245 kilometres away from port P on a bearing of 146 degrees. Calculate the distance between the two ships.

While this problem could be done simply by inputting the appropriate numbers into the correct formula, it is good practice to draw a diagram of the problem in order to minimise any silly mistakes that may be made. Upon drawing the diagram you should be able to see that the placement of the two ships(which we can call A and B) and the port make a triangle and that the information you are given enables you to use the cosine rule to calculate the distance between the two ships.
We can calculate the angle between ship A and ship B is (146-63), since the bearing of ship B is taken from port. The distance between the two ships can be assigned to the variable c.The values are substituted into the cosine rule to result in : c^2 = (180^2) + (245^2) -(2180245*cosC)This is simplified to: c^2 = 81676.12Therefore c = 285.8 kilometres.

SG
Answered by Saeed G. Maths tutor

7539 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A ladder 6·8m long is leaning against a wall, as shown in the diagram. The foot of the ladder is 1·5m from the wall. Calculate the distance the ladder reaches up the wall. Give your answer to a sensible degree of accuracy.


Expand 5(2x-6)


In a bag of 25 coloured balls, 7 are orange, 6 are yellow and the rest are green. Laura picks out a ball and records its colour but doesn't return it to the bag, she then repeats this twice more. What is the probability of Laura getting 3 yellow balls?


The straight line joining the points (1, -2a),(a, 1) has a gradient of 5, find the value of a


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning