Show that (x+1)(x+2)(x+3) can be written in the form ax^3 +bx^2 + cx + d where a,b,c,d are positive integers.

First we shall expand two of the brackets to obtain a quadratic equation and then multiply each term by the remaining bracket. The order with which we expand the brackets does not matter. Use the FOIL method to help remember how to expand brackets: First Outside Inside Last=(x+1)(x2 + 5x + 6)= x3 + 5x2 + 6x + x2 + 5x + 6 Lastly simplify the solution into the form asked for in the question:= x3 + 6x2 + 11x + 6

SW
Answered by Scott W. Maths tutor

8442 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

£3000 is invested for 2 years at 3.8% per annum compound interest. What is the total interest earned over the 2 years?


if x^2 + 9x + 20 = 0, what are the possible values of x?


If f(x)=(x-2)^2, determine the gradient of the tangent to the curve f(x) at x=-2.


How do I solve this linear equation? Angles A and B are in a quadrilateral are in ratio 2:3, angle C is 30 degrees more than angle B and angle D is 90 degrees.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning