Show that (x+1)(x+2)(x+3) can be written in the form ax^3 +bx^2 + cx + d where a,b,c,d are positive integers.

First we shall expand two of the brackets to obtain a quadratic equation and then multiply each term by the remaining bracket. The order with which we expand the brackets does not matter. Use the FOIL method to help remember how to expand brackets: First Outside Inside Last=(x+1)(x2 + 5x + 6)= x3 + 5x2 + 6x + x2 + 5x + 6 Lastly simplify the solution into the form asked for in the question:= x3 + 6x2 + 11x + 6

SW
Answered by Scott W. Maths tutor

9061 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

f is a function such that f(x)=2/(3x-3) Find the inverse function and ff^-1


Solve the simultaneous equations 3x + 4y = 17 and 4x + y = 14


How do you solve the quadratic equation x^2+7x+12=0


1/4 of a number is 20. What is 5 times the number?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning