Show that (x+1)(x+2)(x+3) can be written in the form ax^3 +bx^2 + cx + d where a,b,c,d are positive integers.

First we shall expand two of the brackets to obtain a quadratic equation and then multiply each term by the remaining bracket. The order with which we expand the brackets does not matter. Use the FOIL method to help remember how to expand brackets: First Outside Inside Last=(x+1)(x2 + 5x + 6)= x3 + 5x2 + 6x + x2 + 5x + 6 Lastly simplify the solution into the form asked for in the question:= x3 + 6x2 + 11x + 6

SW
Answered by Scott W. Maths tutor

8082 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What is compound interest?


f is a function such that f(x)=2/(3x-3) Find the inverse function and ff^-1


Expand and simplify (m + 3)(m + 10)


A rectangle has an area of 20 cm2. Its length and width are enlarged by scale factor 3. Find the area of the enlarged rectangle.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning