Convert 0.1727272... to a fraction in its lowest terms.

First we must identify the recurring part of the decimal. We see that 72 is repeated, hence it is the recurring part of the decimal. Next, we say x = 0.1727272..., the reason why will become apparent shortly. Now we multiply x by subsequent powers of 10, starting from 100.x = 0.1727272...10x = 1.727272...100x = 17.27272...1000x = 172.7272...We are looking for two multiples of x that have the recurring part of the decimal starting directly after the decimal point, in this case 10x = 1.727272..., 1000x = 172.7272...1000x - 10x = 172.7272... - 1.727272...990x = 171x = 171/990x = 19/110

IH
Answered by Isaac H. Maths tutor

5700 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

FInd the values of x for the following equation holds: x^2-5x+6=0


How do you measure the gradient of a straight line joining two points?


A is (2, 12) and B is (8, 2) Calculate the midpoint of AB.


n is an integer such that 3n + 2 < 14 and 6n/(n^2+5) > 1. Find all possible values of n.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences