Convert 0.1727272... to a fraction in its lowest terms.

First we must identify the recurring part of the decimal. We see that 72 is repeated, hence it is the recurring part of the decimal. Next, we say x = 0.1727272..., the reason why will become apparent shortly. Now we multiply x by subsequent powers of 10, starting from 100.x = 0.1727272...10x = 1.727272...100x = 17.27272...1000x = 172.7272...We are looking for two multiples of x that have the recurring part of the decimal starting directly after the decimal point, in this case 10x = 1.727272..., 1000x = 172.7272...1000x - 10x = 172.7272... - 1.727272...990x = 171x = 171/990x = 19/110

IH
Answered by Isaac H. Maths tutor

7016 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Amber has an unfair coin. The probability of throwing a tail is p. Amber throws the coin twice and the probability of throwing a head and then a tail is 6/25. Heads are more likely than tails. Show that 25p^2-25p+6=0 and find the value of p.


Solve 3x2 + 7x – 13 = 0 Give your solutions correct to 2 decimal places.


How do you integrate?


Solve algebraically 6a + b = 16 and 5a - 2b = 19


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning