Prove n^3 - n is a multiple of 3

To prove n3-n is a multiple of 3 we rely on a few simple tricks. The first is to factorise the expression.n3-n = n(n2-1)n(n2-1) = (n-1)(n)(n+1)The next trick is to realise that the series of numbers n-1, n, n+1 are consecutive. For example if n = 2:n-1 = 1n = 2n+1 = 3If you have a series of 3 consecutive numbers, clearly one of them will be a multiple of 3. Hence if; n3-n = (n-1)(n)(n+1), for all n and one of the numbers n-1, n, n+1 is a multiple of 3, then n3-n is also a multiple of 3.

IH
Answered by Isaac H. Maths tutor

13232 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the value of the integral of e^x from x = 1 to x = 2?


The tangent to a point P (p, pi/2) on the curve x=(4y-sin2y)^2 hits the y axis at point A, find the coordinates of this point.


y=4sin(kx) write down dy/dx.


You are given the equation y=x^2. Determine whether or not the equation has any maximums or minimums and identify them (whether they are maximums or minimums).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences