Solve the inequality: x^2 - x < 12

Firstly, the equation should be rearranged to get all the non-zero terms onto one side, with the simplest way of doing this being subtracting 12 from both sides, giving the equation x2 - x - 12 < 0. Then the next step would be to factorise the equation to find the roots of the equation, which in other words will be where the quadratic intercepts the x-axis or the line y=0. Doing this gives (x+3)(x-4) < 0, meaning the roots are the equation are x = -3 or x = 4.Now as the roots have been found, we need to find where the graph x2 - x - 12 is lower than 0 as the equality requires. The best way of doing this to be able to understand it is by drawing a graph, but if we think about what the graph will look like, we realise that as the graph is a quadratic, it will be a curved parabola with an intercept of -12 when x = 0 (test this by subbing 0 into the equation). Then we can assume that as the graph is below the line y = 0 when x = 0, and the graph crosses the line y = 0 when x = -3 and x = 4, the graph must be negative for between these values. Therefore the inequality is solved with -3 < x < 4.

TH
Answered by Thomas H. Maths tutor

7324 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Show that (x + 1)(x + 2)(x + 3) can be written in the form ax3 + bx2 + cx + d where a, b, c and d are positive integers.


Find the value of X when 3x^2 + 6x + 3 = 0


Solve 3x^2 + 5x +2


Simplify fully (x^2*x^3)/x^4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning