Prove that the square of an odd integer is odd.

Let n be an odd integer. This means that n is 1 more than an even integer. By definition, even integers are multiples of 2 so all even integers can be written in the form 2m where m is an integer. Therefore, n = 1 + 2m.n2 = (1+2m)2 = 1 + 4m + 4m2 = 1 + 2(2m + 2m2)Again, by definition, 2(2m + 2m2) is even. Therefore, n2 is 1 more than an even integer meaning that n2 is also odd.Thus, we have proven what was required.

MO
Answered by Mary O. Maths tutor

3478 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I know which method of integration to use?


Determine whether the line with equation 2x+ 3y + 4 = 0 is parallel to the line through the points with coordinates (9, 4) and (3, 8).


How do I find the area bounded by the curve y=-x^2+4 and the line y=-x+2?


Find the derivative of f(x)=x^2log(2x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning