Prove that the square of an odd integer is odd.

Let n be an odd integer. This means that n is 1 more than an even integer. By definition, even integers are multiples of 2 so all even integers can be written in the form 2m where m is an integer. Therefore, n = 1 + 2m.n2 = (1+2m)2 = 1 + 4m + 4m2 = 1 + 2(2m + 2m2)Again, by definition, 2(2m + 2m2) is even. Therefore, n2 is 1 more than an even integer meaning that n2 is also odd.Thus, we have proven what was required.

MO
Answered by Mary O. Maths tutor

3674 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the exact solutions, in their simplest form, to the equations : a) 2ln(2x + 1)-4=0 b)7^(x)e^(4x)=e^5


How do you find the inverse of a function?


What are the solutions of (x^3)+6 = 2(x^2)+5x given x = 3 is a solution?


dy/dx= 2x/2 - 1/4x, what is d2y/dx2?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning