Prove that the square of an odd integer is odd.

Let n be an odd integer. This means that n is 1 more than an even integer. By definition, even integers are multiples of 2 so all even integers can be written in the form 2m where m is an integer. Therefore, n = 1 + 2m.n2 = (1+2m)2 = 1 + 4m + 4m2 = 1 + 2(2m + 2m2)Again, by definition, 2(2m + 2m2) is even. Therefore, n2 is 1 more than an even integer meaning that n2 is also odd.Thus, we have proven what was required.

MO
Answered by Mary O. Maths tutor

3599 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you find the equation of a tangent to a curve at a certain point, from the equation of the curve?


Show how you can rewrite (x+1)(x-2)(x+3) into the form of ax^3 + bx^2 + cx + d


Given y=x^2(1+4x)^0.5, show that dy/dx=2x(5x+1)/((1+4x)^0.5)


Differentiate x^3(sinx) with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning