What is the acid dissociation constant, Ka of the 0.150 mol dm–3 solution of weak acid HA with pH of 2.34?

First, It would be useful to write the equation for the dissociation of the weak acid HA, which is HA <--> H++ A-. Then, write the Ka expression of the weak acid HA, which is [H+][A-]/[HA]. We know that [HA] = 0.150 mol dm-3 as the concentration is given in the question. We also know the pH of HA is 2.34, we can find [H+] as pH = -log10[H+] = 2.34. To arrange this equation, [H+] = 10-pH= 10-2.34 = 4.57 x 10-3mol dm-3. As this is a weak acid, it means that HA is only weakly dissociated, so only a very small amount of HA is dissociated into H+ and A- ions. Therefore, we can make the assumption that [H+]=[A-] = 4.57 x 10-3mol dm-3. Now, we have found all the concentrations we need, [H+], [A-] and [HA], we can substitute these values into the Ka expression, so Ka = [H+][A-]/[HA] = (4.57 x 10-3)2 / 0.150 = 1.39 x 10-4 mol dm-3 (3 s.f.).

VS
Answered by Venus S. Chemistry tutor

8592 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

The boiling points of ammonia (NH3), fluorine (F2) and bromine (Br2) are -33, -188 and +59 degrees celsius respectively. Explain the differences in these boiling points, including the names of any relevant forces and particles.


Could you explain why water has a high latent heat of vapourisation?


Explain the purpouse of reflux in the oxidation of ethanol to ethanoic acid


Why do the atomic radii of the elements decrease across a period?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences