How do you find the integral of sin^2(x) dx?

Sin^2(x) cannot be integrated in its current form so you must use trigonometric identities to change sin^2(x) into something else.

Use the formula for cox(2x): cos(2x)=cos(x+x)=cos^2(x)-sin^2(x)

Now use that cos^2(x)=(1-sin^2(x))

So cos(2x)=1-2sin^2(x)

Rearrange the equation to find that sin^2(x)=1/2-1/2(cos(2x))

Now you can integrate to get that the integral of sin^2(x)=1/2x-1/4sin(2x)

CW
Answered by Chloe W. Maths tutor

8247 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the stationary points of the function f(x) = x^3+6x^2+2 and determine if they are local maximums or minimums.


Differentiate xe^2


Express 2(x-1)/(x^2-2x-3) - 1/(x-3) as a fraction in its simplest form.


Given that y=sin2x(3x-1)^4, find dy/dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences