How do you find the integral of sin^2(x) dx?

Sin^2(x) cannot be integrated in its current form so you must use trigonometric identities to change sin^2(x) into something else.

Use the formula for cox(2x): cos(2x)=cos(x+x)=cos^2(x)-sin^2(x)

Now use that cos^2(x)=(1-sin^2(x))

So cos(2x)=1-2sin^2(x)

Rearrange the equation to find that sin^2(x)=1/2-1/2(cos(2x))

Now you can integrate to get that the integral of sin^2(x)=1/2x-1/4sin(2x)

CW
Answered by Chloe W. Maths tutor

8797 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the tangent to the curve y=(3/4)x^2 -4x^(1/2) +7 at x=4, expressing it in the form ax+by+c=0.


solve the inequality x^2+4x-21>0


Differentiate y=ln(x)+5x^2, and give the equation of the tangent at the point x=1


How do you determine the nature of a graphs stationary point? e.g y = 1+2x-x^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning