Differentiate y=3xe^{3x^2}+2x

We differentiate y with respect to x:Firstly, we apply the Chain rule in the fist part of the RHS. Remembering the chain rule is uv -> u'v+uv', so d(3xe^{3x^2})/dx=3e^{3x^2}+18x^{2}e^{3x^2}now, we simply differentiate 2x to 2.Now combining our results:dy/dx = 3e^{3x^2}+18x^{2}e^{3x^2} + 2
Typically 4/5 marks for AS-level papers.

JA
Answered by John A Alejandro B. Maths tutor

3807 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find, w.r.t to x, both the derivative and integral of y=6*sqrt(x)


Find the minimum value of the function, f(x) = x*exp(x)


How can I determine the stationary points of a curve and their nature?


Find ∫ ( 2x^4 - 4x^(-0.5) + 3 ) dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning