Differentiate y=3xe^{3x^2}+2x

We differentiate y with respect to x:Firstly, we apply the Chain rule in the fist part of the RHS. Remembering the chain rule is uv -> u'v+uv', so d(3xe^{3x^2})/dx=3e^{3x^2}+18x^{2}e^{3x^2}now, we simply differentiate 2x to 2.Now combining our results:dy/dx = 3e^{3x^2}+18x^{2}e^{3x^2} + 2
Typically 4/5 marks for AS-level papers.

JA
Answered by John A Alejandro B. Maths tutor

3303 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the gradient of the tangent to the curve with the equation y = (3x^4 - 18)/x at the point where x = 3


Use the chain rule to differentiate y=1/x^2-2x-1


Simplify: 4log2 (3) + 2log2(5)


How can we determine stationary points by completing the square?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences