Differentiate y=3xe^{3x^2}+2x

We differentiate y with respect to x:Firstly, we apply the Chain rule in the fist part of the RHS. Remembering the chain rule is uv -> u'v+uv', so d(3xe^{3x^2})/dx=3e^{3x^2}+18x^{2}e^{3x^2}now, we simply differentiate 2x to 2.Now combining our results:dy/dx = 3e^{3x^2}+18x^{2}e^{3x^2} + 2
Typically 4/5 marks for AS-level papers.

JA
Answered by John A Alejandro B. Maths tutor

3226 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Evaluate the integral ∫2x√(x^2 +1) dx


Solve the differential equation: dy/dx = 6x^2 + 4x + 9


Prove that the square of an odd integer is odd.


Differentiate: y=12x(2x+1)+1/x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences