Find the gradient at x=1 for the curve y=2x*e^2x

The answer to this question is in two parts. We firstly must find the derivative of the function y=f(x) with respect to x, and then substitute the value of x given in the question to find the gradient at that point.To find the derivative of the function, we use both the product and chain rule. we see that dy/dx =4xe^2x+2e^2x using these rules for differentiation.we now substitute x=1 into this to find the gradient as 6e^2 at this point.

DD
Answered by Dominic D. Maths tutor

4152 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y=x^2 from first principles


How would you derive y = function of x; for example: y = 3x^3 + x^2 + x


find dy/dx where y = a^x


Integral of a compound equation (or otherwise finding the area under a graph): f(x) = 10x*(x^(0.5) - 2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences