Find the gradient at x=1 for the curve y=2x*e^2x

The answer to this question is in two parts. We firstly must find the derivative of the function y=f(x) with respect to x, and then substitute the value of x given in the question to find the gradient at that point.To find the derivative of the function, we use both the product and chain rule. we see that dy/dx =4xe^2x+2e^2x using these rules for differentiation.we now substitute x=1 into this to find the gradient as 6e^2 at this point.

DD
Answered by Dominic D. Maths tutor

4364 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equations: x=2sin(t) and y=1-cos(2t). Find dy/dx at the point where t=pi/6


Integrate lnx


If y = 2(x^2+1)^3, what is dy/dx?


If f(x) = x^2 - 3x + 2, find f'(x) and f''(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning