Why is |z| = 1 a circle of radius one? (FP2)

So, basically |z| = 1 is equal to the set containing all complex numbers where their magnitude is equal to one. Also, by unraveling the definition of |z| we get that (x2+y2)1/2=1 which is the same as x2+y2=1 which we can identify as the circle with centred at (0,0) and radius 1.

CM
Answered by Charalambos M. Maths tutor

3102 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I integrate 3^x?


Differentiate with respect to x y=(x^3)ln2x


A curve (C) with equation y=3x^(0.5)-x^(1.5) cuts the X axis at point A and the origin, calculate the co-ordinates of point A.


How can I demonstrate that (sin(T)+cos(T))(1-sin(T)cos(T))=(sin(T))^3+(cos(T))^3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning