Why is |z| = 1 a circle of radius one? (FP2)

So, basically |z| = 1 is equal to the set containing all complex numbers where their magnitude is equal to one. Also, by unraveling the definition of |z| we get that (x2+y2)1/2=1 which is the same as x2+y2=1 which we can identify as the circle with centred at (0,0) and radius 1.

CM
Answered by Charalambos M. Maths tutor

3215 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Question 3 on the OCR MEI C3 June 2015 paper. Find the exact value of Integral x^3 ln x dx between 1 and 2.


Differentiate with respect to x: y = ln(x^2+4*x+2).


Why does differentiation give us the results that it does?


Solve the equation d/dx((x^3 + 3x^2)ln(x)) = 2x^2 + 5x, leaving your answer as an exact value of x. [6 marks]


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning