Find the equation of a straight line that passes through the points (2,7) and (5,3)

Since we're told the line is straight, the equation of the line will be of the form y = mx + c.The gradient of the line, m, is the change in y divided by the change in x ; m = (3-7)/(5-2) = - 4/3.Therefore, the line has the equation y = (-4/3)x + c, where c is an unknown value. To find c, put the x and y values of one of the co-ordinates into the equation. For example, considering (2,7) ; 7 = (-4/3)(2) + c.This equation can then be re-arranged to find c ; 7 = -8/3 + c , therefore c = 29/3Therefore, the equation of the straight line is; y = (-4/3)x + 29/3

JN
Answered by Joshua N. Maths tutor

3463 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

In a cinema, male to female ratio is - 1:3. The ratio of the females, who like popcorn to females who don't like popcorn is 2:1. 10 girls don't like popcorn. How many people are there in the cinema altogether?


Simplify (x + 3)(2x + 5) - (x - 1)


Solve the following simultaneous equation: x^2 + y^2 = 9 X+y=2


Rectangle A has a length of 3y cm and a width of 2x cm. Rectangle B has a length of (y + 4)cm and a width of (x + 6)cm. Rectangle A has a perimeter of 94cm and Rectangle B has a perimeter of 56cm. Solve x and y and calculate the areas of each rectangle.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning