Find the equation of a straight line that passes through the points (2,7) and (5,3)

Since we're told the line is straight, the equation of the line will be of the form y = mx + c.The gradient of the line, m, is the change in y divided by the change in x ; m = (3-7)/(5-2) = - 4/3.Therefore, the line has the equation y = (-4/3)x + c, where c is an unknown value. To find c, put the x and y values of one of the co-ordinates into the equation. For example, considering (2,7) ; 7 = (-4/3)(2) + c.This equation can then be re-arranged to find c ; 7 = -8/3 + c , therefore c = 29/3Therefore, the equation of the straight line is; y = (-4/3)x + 29/3

JN
Answered by Joshua N. Maths tutor

3459 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Liv and Laura win a lottery of £350,000 and decide to split their winnings according to the ratio 3:4. Work out how much each person receives.


Factorise x^2 - 8x - 20


There are 40 pencils in a box. There are 15 pens in a packet. John gives one pencil and one pen to each person at a conference. He has no pencils or pens left. How many boxes of pencils and how many packets of pens did John buy?


The circle c has equation x^2+y^2 = 1 . The line l has gradient 3 and intercepts the y axis at the point (0, 1). c and l intersect at two points. Find the co-ordinates of these points.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning