Find the equation of a straight line that passes through the points (2,7) and (5,3)

Since we're told the line is straight, the equation of the line will be of the form y = mx + c.The gradient of the line, m, is the change in y divided by the change in x ; m = (3-7)/(5-2) = - 4/3.Therefore, the line has the equation y = (-4/3)x + c, where c is an unknown value. To find c, put the x and y values of one of the co-ordinates into the equation. For example, considering (2,7) ; 7 = (-4/3)(2) + c.This equation can then be re-arranged to find c ; 7 = -8/3 + c , therefore c = 29/3Therefore, the equation of the straight line is; y = (-4/3)x + 29/3

JN
Answered by Joshua N. Maths tutor

3281 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

There are 48 girls in a large cheerleading squad. The ratio of girls to boys in this squad is 8:3. How many boys are in the squad?


May you please help me solve these algebra problem set ?


Solve the two simultaneous equations X2 +2Y2= 18 and X - Y = 3


Jon and Nik share money in the ratio 5 : 2 Jon gets £150 more than Nik. How much money do they share altogether?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences