Find the equation of a straight line that passes through the points (2,7) and (5,3)

Since we're told the line is straight, the equation of the line will be of the form y = mx + c.The gradient of the line, m, is the change in y divided by the change in x ; m = (3-7)/(5-2) = - 4/3.Therefore, the line has the equation y = (-4/3)x + c, where c is an unknown value. To find c, put the x and y values of one of the co-ordinates into the equation. For example, considering (2,7) ; 7 = (-4/3)(2) + c.This equation can then be re-arranged to find c ; 7 = -8/3 + c , therefore c = 29/3Therefore, the equation of the straight line is; y = (-4/3)x + 29/3

Answered by Joshua N. Maths tutor

2714 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Using the quadratics formula find the two solutions to x^2 + 3x + 2 = 0.


If one shop has melons for sale on a buy one get one free offer at £2 a melon with each melon weighing 2kg, and a second shop offering melons at 30p per kilogram. Which shop is the best value for money?


How do I solve an equation where there are unknowns on both sides of the equation?


Find the equation of the tangent to y = 2x^2 + 7 at x = 3.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy