Differentiate 4(x^3) + 3x + 2 with respect to x

Solution: 12x+ 3

Working:

General differentiation formular:  d/dx (ax) = an(xn-1

So we multiply the coefficient (constant infront) of the x term by the power of x (in this case: n) and reduce the power by 1.

d/dx (4x3 + 3x +2) = d/dx (4x3) + d/dx(3x) + d/dx(2)

                              = 43x3-1 + 31x1-1 + 0

                              = 12x2 + 3

Note: for the second term in the expression, x can be written x1 and also x0 = 1. This is true for any value to the power of zero.

Notation: 3*4 = 3 times 4 =12

TD
Answered by Tutor77028 D. Maths tutor

3578 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Let f(x)= x^3 -9x^2 -81x + 12. Calculate f'(x) and f''(x). Use f'(x) to calculate the x-values of the stationary points of this function.


Find the area of the region, R, bounded by the curve y=x^(-2/3), the line x = 1 and the x axis . In addition, find the volume of revolution of this region when rotated 2 pi radians around the x axis.


Find the gradient of the function f(x,y)=x^3 + y^3 -3xy at the point (2,1), given that f(2,1) = 6.


How do you integrate tan^2(x)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning