A ball is thrown in the air. The height of the ball at time t is given by: h=5+4t-2t^2. What is its maximum height? At what time does the ball reach this height?

First, we find the derivative of h: dh/dt= 4-4t. To find the point(s) of interest, we solve dh/dt=0. This gives the answer t=1. In order to determine whether t=1 is a minimum point or maximum point we find the second derivative of h: d2h/dt2=-4. As the second derivative of h is less than 0, this shows that there is a maximum point at t=1. Therefore, the ball reaches its maximum height when t=1. To determine the maximum height, we substitute t=1 into the equation for h. Here, we find the maximum height achieved by the ball is h=7.

DS
Answered by Debbie S. Maths tutor

4204 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate with respect to x: y=xln(x)


How do I integrate tan^2 x?


Show by induction that sum_n(r*3^(r-1))=1/4+(3^n/4)*(2n-1) for n>0


Find the exact value of x from the equation 3^x * e^4x = e^7


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences